
Section 14

Lecture 4
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Plan for today

Look at examples of causal graphs.
Explain that an association may or may not be interpreted as a causal
e↵ect.
Illustrate that the structural equations tell us something about the law
of counterfactual variables.

Define SWIGs and study properties of SWIGs.
factorization and modularity.
Use SWIGs for identification.
Use SWIGs for identification in the presence of hidden variables.
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Causal DAG

Definition (Robins EPI 207)

A causal model associated with a DAG satisfies:

1 The lack of an arrow from node Vi to Vj can be interpreted as the absence
of a direct causal e↵ect of Vi on Vj (relative to the other variables on the
graph).

2 Any variable is a cause of all its descendants. Equivalently, any variable is
caused by all its ancestors.

3 All common causes, even if unmeasured, of any pair of variables on the
graph, are themselves on the graph.

4 The Causal Markov Assumption (CMA): The causal DAG is a statistical
DAG, i.e., the distribution of V factors.

5 Because of the causal meaning of parents and descendants on a causal DAG,
the Causal Markov Assumption is equivalent to the statement:

Conditional on its direct causes (i.e., parents), a variable Vi is
independent of any variable it does not cause (i.e., any nondescendant).
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Absence of common causes in the NPSEM-IE and DAG
(point 3)

The arguments here are analogous to the motivating example for the
simple graph with A, L,Y and smoking S .

Remember that Uk represents all other variables that exert direct
e↵ects Vk except the parents PAk .

Suppose that there exists a variable C that is a direct determinant of
Vk relative to the DAG (i.e. it does not only determine Vk through
variables in the DAG).

This means that Uk = mk(C ,U⇤
k ) for some function mk .

Suppose that C is also a direct determinant of a node j (but C is still
not in the DAG).

Thus, Uj = mj(C ,U⇤
j ) for some function mj .

Thus, Uk 6?? Uj .
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Factorization of the NPSEM-IE (point 4)

Argument for Markov factorization of causal model wrt. a DAG

p(v) =
mY

j=1

p(vj | paj).

Proof.
Consider p(vj | v j�1) for any j 2 {0, . . . ,m}. Here paj are the parents of vj .

p(vj | v j�1)

= p(fvj (PAj ,Uvj ) = vj | V j�1 = v j�1)

= p(fvj (paj ,Uvj ) = vj | V j�1 = v j�1)

= p(fvj (paj ,Uvj ) = vj | fvj�1
(paj�1,Uvj�1

) = vj�1, . . . , fv1(pa1,Uv1) = v1)

= p(fvj (PAj ,Uvj ) = vj | PAj = paj).
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No restrictions on p(v) imposed by the NPSEM-IE

We have seen from Slide 107 that the only restriction imposed on the
observed law is the factorization

p(v) =
mY

j=1

p(vj | paj).

Proof.

Any further restriction must be a restriction on the form of p(vj | paj) for
any j 2 {0, . . . ,m}. But

P(Vj = vj | PAj = paj) = P(fvj (paj ,Uvj ) = vj),

and we have not put any restrictions on the marginal density of Uvj .
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So we have an algorithm for creating causal graphs

We can create a causal DAG by:

1 Draw nodes for the exposure A and the outcome Y of interest.

Draw an arrow from A to Y .

2 If there exists a common cause C of A and Y , write C in the graph.

Draw arrows from C to A and from C to Y .
These common causes must be drawn, even if they are unmeasured.

3 If there exists a common cause C
0 of any pair W ,W 0 2 (C ,A,Y ), write C

0

in the graph.

Draw arrows from C
0 to W and from C

0 to W
0.

4 Continue in this way until there are no common causes...
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Carrying a lighter A and the risk of lung cancer Y

A YL
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A gene A that causes heart disease L but not smoking Y ,
where C is taking aspirin (A cardiovascular drug)

A Y L

A Y L C
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Example: Birth weight paradox

Birth weight predicts infant mortality.

Investigators often stratify on birth weight when evaluating the e↵ect
of maternal smoking on infant mortality.

Among infants with low birth weight, the mortality rate ratio for
smoke exposed infants versus non-exposed infants is 0.79 (95% CI:
0.76, 0.82).

This birth weight paradox has been a controversy for decades.

One suggestion is that the e↵ect of maternal smoking is modified by
birth weight in such a way that smoking is beneficial for LBW babies.

Is this indeed the likely explanation?
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Example: Birth weight paradox

A

B

Y

U

A Smoking status of the mother

B Birth weight

U Unknown factor (e.g. genetic) causing low birth weight

Y Infant mortality

PS: for this graph to be more plausible, we should also add common
causes of A and Y .
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Example: Randomised study with loss to follow-up

Consider our running, conceptual example on a conditional
randomised study of heart transplant.

Suppose that some young people who were transplanted were lost to
follow-up because they moved to another population. The fact that
they were young also made them, of course, less likely to die.

Can we use the observed data to make causal inference?

A YC

W

L
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Factorization on the counterfactual law

Theorem (Factorization of a counterfactual law)

When positivity holds under a regime g defined in a counterfactual causal model

(in particular the NPSEM-IE), the counterfactual law factorizes as

p
g (v) =

Y

j :j /2{j1,...,jt}

p(vj | paj)⇥
Y

j :j2{j1,...,jt}

I (gj(v j�1) = vj)

We will not show this result, but it follows from a similar argument as given for
the graph with (L,A,Y ).
This factorization is sometimes called the truncation formula.
Thus, when positivity holds for a regime g that fixes Vj to vj for j in
j 2 {j1, . . . , jt} under a counterfactual causal model, we have that

p
g (v)

p(v)
=

Q
j :j2{j1,...,jt} I (gj(v j�1) = vj)Q

j :j2{j1,...,jt} p(vj | paj)
.
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Elephant in the room...

In a randomised study, the following graph is a causal DAG:

A Y

And we know that Y a ?? A for a 2 {0, 1}.
But the counterfactual independence cannot be read o↵ from the graph!
This raises some questions:

Can we construct graphs to read o↵ such counterfactual
independencies?

Can we read o↵ factorizations of counterfactual laws from graphs?

Mats Stensrud Randomisation and Causation Spring 2024 142 / 402



D-separation allows us to read o↵ whether an association
is causal

We can graphically check – using d-separation – whether an observed
association between two variables A and B conditional on C is (solely) due
to a causal e↵ect (i.e. that the association is unconfounded).

However, we also want to use graph to evaluate if we can identify
functionals of counterfactual variables, for example E(Y a). Now, the
elephant in the room is that there are no counterfactual variables on the
DAG! And we did want to reason about counterfactual independencies.
Thus, whereas we can evaluate independencies between factual variables in
a DAG, we cannot study counterfactual independencies.

Here we will study a recent and elegant26 transformation of the DAG – the
so-called Single World Intervention Graph (SWIG) – that does allow us to
read o↵ independencies between factual and counterfactual variables.

26Thomas S Richardson and James M Robins. “Single world intervention graphs
(SWIGs): A unification of the counterfactual and graphical approaches to causality”. In:
Center for the Statistics and the Social Sciences, University of Washington Series.

Working Paper 128.30 (2013).
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Section 15

Single World Intervention Graphs (SWIGs)
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Creation of SWIGs

The SWIG G(a) is created as follows (it can be conceived as a function
that transforms the original DAG into a new graph, which is still a DAG):

1 Draw the DAG that represents the causal model.
2 Split treatment variables into two nodes (indicated by semi-circles),

left and right.
The left node encodes the random variable treatment that would have
been observed in the absence of an intervention. This is called the
natural value of treatment node. Natural value of treatment nodes
should be treated as nodes of an ordinary DAG, i.e., ordinary random
variables.
The right node encodes the value of treatment under the intervention.
These nodes should be treated as constants, i.e. fixed nodes.

3 Re-label every non-manipulated descendant of an intervention node
with superscript: the superscripts indicate the counterfactual.

Use consistency to obtain graphs with minimal labelling, i.e. the
minimal set of counterfactuals in the superscript.

Mats Stensrud Randomisation and Causation Spring 2024 145 / 402



Example: SWIG in a simple randomised trial

SWIG under treatment a = 1:

A Y A a = 1 Y
a=1

We can read o↵ the independence Y
a=1 ?? A.

We also associate the new factorization:

P(A = a
0,Y a=1 = y) = P(A = a

0)P(Y a=1 = y),

where we omit the fixed nodes from the conditioning set. Furthermore, we
make a modularity assumption (which would be implied by the
NPSEM-IE)

P(Y a=1 = y) = P(Y = y | A = 1),

which links the original factorization to the original DAG factorization.
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Single world

We can read the independence Y
a=1 ?? A from the SWIG for treatment a = 1:

A Y A a = 1 Y
a=1

We can read the independence Y
a=0 ?? A from the SWIG for treatment a = 0:

A Y A a = 0 Y
a=0

Why do we need both graphs? These are two di↵erent graphs that represent the
factorization of di↵erent margins: P(A = a

0,Y a=1 = y) and
P(A = a

0,Y a=0 = y). None of the SWIGs encodes assumptions between
counterfactuals from di↵erent worlds Y a=0 and Y

a=1. This is a feature, not a
bug.
It has to do with identification. Node splitting preserves identification. If I
observe every node that I included in the original DAG, then the counterfactual
laws defined by the node splittings are also going to be identified: If
P(A = a

0,Y = y) is identified, then P(A = a
0,Y a=1 = y) is identified and so is

P(A = a
0,Y a=0 = y), but not P(A = a

0,Y a=1 = y
0,Y a=0 = y).
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SWIT in a simple randomised trial

A SWIT is a SWIG template27, i.e. a graph valued function:

It takes a specific value a as input.

Returns a SWIG G (a).

SWIG G (0) represents p(A = a
0,Y a=0 = y).

SWIG G (1) represents p(A = a
0,Y a=1 = y).

A Y A a Y
a

The SWIT represents both the SWIGs from the previous slide. Hereafter
we will use SWITs for simplicity, most of the time.

27Note that I am sometimes sloppy and use the word SWIG when I formally talk
about a SWIT.
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Factorization

Definition (SWIG factorization)

The factorization associated with a SWIG is

P(V a = v) =
Y

Vi2V
P(V ai

i = vi | (PAG(a),i \ a) = q)

where q ✓ pai ⇢ v and ai ✓ a (ai are the elements of a that are ancestors
of Vi ).
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Modularity

Definition (Modularity)

The DAG pair (G, p(v)) and the SWIG pair (G(a), pa(v)) under an intervention
that sets A = (A0, . . . ,Ak) to a = (a0, . . . , ak) satisfy modularity for every Vi 2 V

if

P(V ai
i = vi | (PAG(a),i \ a) = q)

=P(Vi = vi | (PAG,i \ A) = q, (PAG,i \ A) = aPAG,i\A)

This definition looks like a mouthful, but it is conceptually quite easy to
understand. It bridges counterfactual densities and observable densities.
It is implied by the independent error assumption of the NPSEM-IE, and it holds
under a weaker causal model, the FFRCISTG28 (I have not shown this).

28Richardson and Robins, “Single world intervention graphs (SWIGs): A unification of
the counterfactual and graphical approaches to causality”.
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Causal models, factorization and modularity

Theorem

A NPSEM-IE model (and the FFRCISTG model that includes the

NPSEM-IE model as a strict submodel) obeys factorization and modularity.

We will not prove this result, but we will use it extensively.
In our saturated graph when we intervene to set a = 1, it implies that
P(Y a=1 = y) = P(Y = y | A = 1).
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D separation of a path (minimal modification in SWIGs)

A slight twist of D-separation for SWIGs

Definition (d-separation of a path)

A path r is d-separated by a set of nodes Z i↵

1 r contains a chain Vi ! Vj ! Vk or a fork Vi  Vj ! Vk such that
Vj is in Z , or

2 r contains a collider Vi ! Vj  Vk such that Vj is not in Z and such
that no descendant of Vj is in Z .

If a path is not d-separated by Z and there is no fixed node on the path,
then the path is d-connected given Z .
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